
Key Management Based on
Ownership of Multiple Authenticators

in Public Key Authentication

Kodai Hatakeyama, Daisuke Kotani and Yasuo Okabe
Kyoto University, Japan

1

[Background] Public Key Authentication (PKA)

• Is an alternative or complement way of password authentication

• Before authentication, a user has registered her account with a service
• The user manages a private key (also called secret key)
• The service manages the corresponding public key bounded to her account

2

Device

Service

Private key

2. Return a signature signed by

the private key to the challenge

3 Verify the signature with the
public key bounded to her

account

pksk
User Public keyAccount

Bindown

1. Send a challenge

Fig: How to authenticate

Public key(pk)
+ attestation

[Background] Key Management in PKA

3

User manages private keys

• On owned devices (called authenticators)
• Smartphone, laptop, …

• Authenticators store private keys in secure storage where…
• private keys cannot be exported
• they require local authentication when using private keys

• Authenticators can send an attestation about public keys to be registered
• Attestations are signed by the attestation key embedded by its manufacturer

Authenticator
Service

Private key

pksk

User

Bind

Public key

Own

AccountVia a secure channel

secure storage

attestation
key

¥

Service manages public key

Public key(pk)
+ attestation

[Background] Key Management in PKA

4

User manages private keys

• With binding each public key to legitimate account
• Services bind a public key

• When the user send it via trusted communication
• e.g.) communication during account registration

• When the attestation is successfully verified
• They verify that the corresponding private key is securely stored

Authenticator
Service

Private key

pksk

User

Bind

Public key

Own

AccountVia a secure channel

secure storage

attestation
key

¥

Service manages public key

[Problem] Multiple Authenticators

• User can only access services with the registered authenticator
• Because authenticators cannot export private keys to another authenticator

5

AuthB

User
AuthC

Service β

Account β

z

Revoke registered public keys of AuthB
because of losing AuthB

Cannot access service β
with authenticator A(AuthA)!

[The Big burden of user]
To manage public keys of each authenticator according to its lifecycle

Service α

Account α

AuthA

Private key
Public keyBind

Have to register a new AuthC
with each service

Contribution

The mechanism where users and services manage public keys based on
the owner of authenticators storing the corresponding private keys.

• Share a secret among owned authenticators only once in advance
• Avoid collation of accounts by collusion with multiple services
• Support for updating authenticators in response to their lifecycle

6

Proposal

Evaluation

• analyze the proposal mechanism with threat modeling

• evaluate what measures our proposal takes against the found threats

[Related Work] Proxy registration of public keys

1. When the user has three authenticators

2. Support for updating authenticators in response to their lifecycle

7

BUser

Authenticator A Service α

pkα
Accountα

Service β

pkβ
Accountβ

α

β
skα

pkβ

pkα

skβ

Seed for generating public keys: Spk

Registration
on behalf of AuthB

Spk
Derive

public keys

Seed for generating private keys

Ssk
Derive

Private keys

The registered authenticator generates and registers a public key
of another one on behalf of it.

Problems

Can access
without explicitly registering

[Proposal] Overview(1/2)
• Introduce a cryptographic key pair called an Ownership Verification Key (OVK)
• The private key of the OVK (OVSK): shared among all authenticators owned by a user
• The public key of the OVK (OVPK): bounded to her account and managed by a service

• By using OVSK/OVPK
• a user can prove the ownership of authenticators
• a service can verify whether the public key to be registered is generated on her

authenticators

8

B
User

Authenticator A

OVSK

Service

OVPK

pkB

Account

signature to pkB by OVSK

Share
Bind

prove that skB is stored in
her owned authenticator

Bind ?

Private key

skB

Public key

Verify

register OVPK during
account registration

[Proposal] Overview(2/2)
• Updates OVK when a user changes a set of her authenticators

• A user shares a new OVSK2 among all owned authenticators including a new one

• Registered authenticators notify services of updating the OVPK2.

• the message contains the new OVPK2 signed by the previous OVSK1.

• Services bind a new OVPK to her account based on the most trustworthy message

9

User

OVSK1

Service

OVPK1

pkA

pkB

Account

lost

OVSK2Update

signature to OVPK2 by OVSK1

send by Authenticator B

AuthB notifies
OVPK2 is the successor to OVPK1

OVPK2
Updatesignature by OVSK2

Registration after OVK renewal

revoke

B

skB

A

skA

C

Re-Bind

Verify

[Proposal] Technical details

• How to derive the same OVK among authenticators for each service.
• [P1] Sharing a seed among authenticators
• [P2] Deriving the same OVSK among all authenticators from a pre-shared secret

• How to update a new OVK in authenticators and services
• [P1] Re-sharing a new seed among authenticators
• [P3] Updating an OVPK registered with services

10

Explain the proposals marked in red (P2 and P3)

[P2] Deriving an OVSK from a pre-shared secret

To prevent services from correlating their accounts by using OVPKs

11

B

User

Authenticator
A

Service α

OVPKα

Share
Account α

Service β

OVPKβ

Account β

register OVPK
at account registration

α

β

Requirement

Even if service α and β collude

OVPKα OVPKβ
andby using

α β
and represent

They cannot reveal that

Register different OVPKs with each service

Reason

OVSKα

OVPKβ

OVPKα

OVSKβ

the same

[P2] Deriving an OVSK from a pre-shared secret
• Authenticators agree in advance on the following parameters

• seed: the secret shared among authenticators, svcidα : identifier of Service α
• KDF: the key derivation function: input = (seed, Rα) and output = OVSKα
• MAC: the message authentication code function: key = OVSKα

• Authenticator A registers OVPK and metadata (Rα, Mα) with Service α
• Rα : service α stores the random value and provides it to other authenticators
• Mα : other authenticators verify the received mac value is for Rα and service α

12

User

A

Service α

OVPKα

Share
Account

OVSKα At account registration

(Rα, Mα)
metadata

MAC
svcidα OVPKα

Mα, Rα : metadataRα

B OVSKα

Rαseed

Register a public key

KDF

MAC
svcidα

verify M == Mα

KDF

seed

(OVSKα, OVPKα)

Authenticator A Service α

OVPKα
Rα

register

OVPKα, (Rα, Mα)

(Rα, Mα)
KDF

Rβ

KDF (OVSKβ, OVPKβ)

Rα Rβ OVPKα OVPKβ

Mα = MAC(OVSKα; Rα + svcidα)

Mβ = MAC(OVSKβ; Rβ + svcidβ)

α

[P2] Unique OVKs per Service

services cannot correlate their accounts
by using registered OVPKs

Service β

OVPKβ
(Rβ, M β)βregister

OVPKβ, (Rβ, Mβ)

13

[P3] Updating an OVK
OVPKn+1 inherits as much trustworthiness of OVPKn as possible

14

B

User
skB

A

skA

OVSK1

Service

pkA

pkB

Account

OVSK2

signature to OVPK2 by OVSK1

send by B

Steal A

Attacker
OVSK2

mal
signature to OVPK2

mal by OVSK1

send by A

Attack! Which keys does the service trust?

OVPK2 OVPK2
mal

Registered authenticators send the updating message containing
the legitimate OVPKn+1 signed by the previous OVSKn .

Attackers try to update a malicious OVPKn+1
mal

Goal

Method

Problem

[P3] Evaluating the Trustworthiness of
an Updating Message

• The trustworthiness of all registered authenticators is equal.
• It is difficult for a service to determine whether an authenticator is stolen or not.

• It takes time for an attacker to gain control of a stolen authenticator

15

Assumption

Method

contains a candidate OVPK signed by the registered OVSK

• If the same updating message comes from more than half of authenticators
• the service trusts the message

• Otherwise, the service trusts
• the updating message sent from the most authenticators
• the earliest received message if more than one the most trustworthiness messages

[Evaluation] Threat modeling

• We evaluated our proposal mechanism by using threat modeling

• We confirmed that our proposal achieves some security goals such as
• [SG-2] preventing correlation of accounts and
• [SG-3] correctly binding public keys to accounts.

• We discussed how our proposal mitigates threats for which measures
are not sufficient.

16

[Evaluation] Threat Analysis Example

A malicious service
• pretends legitimate services and sends metadata stolen from the services.
• prompts the user to register a new public key

The malicious service correlates OVPKs
by whether the user requests a public key registration or not

17

Threat

Scenario

Violation SG-2: Services cannot correlate their accounts

Homograph Mis-Registration

Address
Authenticators verify the MAC value of the received metadata

including the identifier of the service that they communicate

Conclusion

18

• analyze the proposal mechanism with threat modeling

• evaluate what measures our proposal takes against found threats

• formal verification of cryptographic operations

• improvement of calculating trustworthiness of update messages.

Introduce a key pair called Ownership Verification Key (OVK)

The mechanism where users and services manage public keys based on
the owner of authenticators storing the corresponding private keys.

• A user derives OVSK on her authenticators from the pre-shared seed

• A service binds OVPK and public keys signed by an OVSK to her account.

• They update OVK in response to authenticators’ lifecycle

Proposal

Evaluation

Future
Work

