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[Background] Public Key Authentication (PKA)

* Is an alternative or complement way of password authentication

* Before authentication, a user has registered her account with a service
* The user manages a private key (also called secret key)
* The service manages the corresponding public key bounded to her account
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[Background] Key Management in PKA
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‘User manages private keys ‘

 On owned devices (called authenticators)
 Smartphone, laptop, ...
* Authenticators store private keys in secure storage where...
* private keys cannot be exported
* they require local authentication when using private keys
* Authenticators can send an attestation about public keys to be registered
e Attestations are signed by the attestation key embedded by its manufacturer



[Background] Key Management in PKA
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‘ ‘ Service manages public key

* With binding each public key to legitimate account
e Services bind a public key
* When the user send it via trusted communication
* e.g.) communication during account registration
 When the attestation is successfully verified
* They verify that the corresponding private key is securely stored



[Problem] Multiple Authenticators

* User can only access services with the registered authenticator
* Because authenticators cannot export private keys to another authenticator
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[The Big burden of user]
To manage public keys of each authenticator according to its lifecycle .




Contribution

‘ Proposal ‘

The mechanism where users and services manage public keys based on
the owner of authenticators storing the corresponding private keys.

* Share a secret among owned authenticators only once in advance

* Avoid collation of accounts by collusion with multiple services

e Support for updating authenticators in response to their lifecycle

Evaluation

* analyze the proposal mechanism with threat modeling
* evaluate what measures our proposal takes against the found threats



[Related Work] Proxy registration of public keys

The registered authenticator generates and registers a public key
of another one on behalf of it.

1. When the user has three authenticators
‘ Problems‘

2. Support for updating authenticators in response to their lifecycle
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[Proposal] Overview(1/2)

* Introduce a cryptographic key pair called an Ownership Verification Key (OVK)
* The private key of the OVK (OVSK): shared among all authenticators owned by a user
* The public key of the OVK (OVPK): bounded to her account and managed by a service

* By using OVSK/OVPK
* a user can prove the ownership of authenticators

e a service can verify whether the public key to be registered is generated on her
authenticators
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[Proposal] Overview(2/2)

* Updates OVK when a user changes a set of her authenticators
* A user shares a new OVSK? among all owned authenticators including a new one

» Registered authenticators notify services of updating the OVPK?.
* the message contains the new OVPK? signed by the previous OVSK!.

* Services bind a new OVPK to her account based on the most trustworthy message
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|Proposal] Technical details

* How to derive the same OVK among authenticators for each service.
e [P1] Sharing a seed among authenticators
* [P2] Deriving the same OVSK among all authenticators from a pre-shared secret

* How to update a new OVK in authenticators and services
e [P1] Re-sharing a new seed among authenticators
* [P3] Updating an OVPK registered with services

Explain the proposals marked in red (P2 and P3)
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[P2] Deriving an OVSK from a pre-shared secret

‘ Requirement ‘ Register different OVPKs with each service

‘ Reason ‘ To prevent services from correlating their accounts by using OVPKs
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[P2] Deriving an OVSK from a pre-shared secret

e Authenticators agree in advance on the following parameters

* seed: the secret shared among authenticators, svcid,
* KDF: the key derivation function: input =

* MAC: the message authentication code function: key = OVSK|

* Authenticator A registers OVPK and metadata (R,, M,) with Service a
* R, :service a stores the random value and provides it to other authenticators
. Ma: other authenticators verify the received mac value is for R, and service a
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[P2] Unique OVKs per Service
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[P3] Updating an OVK

Goal ‘ OVPK"*! inherits as much trustworthiness of OVPK" as possible

‘ Method ‘

Registered authenticators send the updating message containing
the legitimate OVPK"*! signed by the previous OVSK" .

‘ Problem ‘ Attackers try to update a malicious OVPK™?!_
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[P3] Evaluating the Trustworthiness of

an Updating Message
L contains a candidate OVPK signed by the registered OVSK

‘ Assumption ‘

* The trustworthiness of all registered authenticators is equal.
e |t is difficult for a service to determine whether an authenticator is stolen or not.

* It takes time for an attacker to gain control of a stolen authenticator

Method

* If the same updating message comes from more than half of authenticators
* the service trusts the message

* Otherwise, the service trusts
* the updating message sent from the most authenticators
* the earliest received message if more than one the most trustworthiness messages
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[Evaluation] Threat modeling

* We evaluated our proposal mechanism by using threat modeling

* We confirmed that our proposal achieves some security goals such as
* [SG-2] preventing correlation of accounts and
* [SG-3] correctly binding public keys to accounts.

* We discussed how our proposal mitigates threats for which measures
are not sufficient.
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[Evaluation] Threat Analysis Example

Threat | Homograph Mis-Registration

A malicious service

* pretends legitimate services and sends metadata stolen from the services.
Scenario * prompts the user to register a new public key

The malicious service correlates OVPKs
by whether the user requests a public key registration or not

Violation | SG-2: Services cannot correlate their accounts

Authenticators verify the MAC value of the received metadata
Address

including the identifier of the service that they communicate
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Proposal

Evaluation

Future
Work

Conclusion

Introduce a key pair called Ownership Verification Key (OVK)

The mechanism where users and services manage public keys based on
the owner of authenticators storing the corresponding private keys.

* A user derives OVSK on her authenticators from the pre-shared seed
* A service binds OVPK and public keys signed by an OVSK to her account.
* They update OVK in response to authenticators’ lifecycle

* analyze the proposal mechanism with threat modeling
* evaluate what measures our proposal takes against found threats

e formal verification of cryptographic operations
* improvement of calculating trustworthiness of update messages.
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