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[Background] Public Key Authentication (PKA)

• Is an alternative or complement way of password authentication

• Before authentication, a user has registered her account with a service
• The user manages a private key (also called secret key)
• The service manages the corresponding public key bounded to her account
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[Background] Key Management in PKA
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User manages private keys

• On owned devices (called authenticators)
• Smartphone, laptop, …

• Authenticators store private keys in secure storage where…
• private keys cannot be exported
• they require local authentication when using private keys

• Authenticators can send an attestation about public keys to be registered
• Attestations are signed by the attestation key embedded by its manufacturer
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Public key(pk) 
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[Background] Key Management in PKA
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User manages private keys

• With binding each public key to legitimate account
• Services bind a public key 

• When the user send it via trusted communication
• e.g.) communication during account registration

• When the attestation is successfully verified
• They verify that the corresponding private key is securely stored
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[Problem] Multiple Authenticators

• User can only access services with the registered authenticator 
• Because authenticators cannot export private keys to another authenticator
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Contribution

The mechanism where users and services manage public keys based on 
the owner of authenticators storing the corresponding private keys.

• Share a secret among owned authenticators only once in advance
• Avoid collation of accounts by collusion with multiple services
• Support for updating authenticators in response to their lifecycle
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Proposal

Evaluation

• analyze the proposal mechanism with threat modeling

• evaluate what measures our proposal takes against the found threats



[Related Work] Proxy registration of public keys

1. When the user has three authenticators

2. Support for updating authenticators in response to their lifecycle
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[Proposal] Overview(1/2)
• Introduce a cryptographic key pair called an Ownership Verification Key (OVK)
• The private key of the OVK (OVSK): shared among all authenticators owned by a user
• The public key of the OVK (OVPK): bounded to her account and managed by a service

• By using OVSK/OVPK
• a user can prove the ownership of authenticators
• a service can verify whether the public key to be registered is generated on her 

authenticators
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[Proposal] Overview(2/2)
• Updates OVK when a user changes a set of her authenticators

• A user shares a new OVSK2 among all owned authenticators including a new one

• Registered authenticators notify services of updating the OVPK2.

• the message contains the new OVPK2 signed by the previous OVSK1.

• Services bind a new OVPK to her account based on the most trustworthy message
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[Proposal] Technical details 

• How to derive the same OVK among authenticators for each service.
• [P1] Sharing a seed among authenticators
• [P2] Deriving the same OVSK among all authenticators from a pre-shared secret 

• How to update a new OVK in authenticators and services
• [P1] Re-sharing a new seed among authenticators
• [P3] Updating an OVPK registered with services
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Explain the proposals marked in red (P2 and P3)



[P2] Deriving an OVSK from a pre-shared secret 

To prevent services from correlating their accounts by using OVPKs
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[P2] Deriving an OVSK from a pre-shared secret 
• Authenticators agree in advance on the following parameters

• seed: the secret shared among authenticators,  svcidα : identifier of Service α
• KDF: the key derivation function: input = (seed, Rα ) and output = OVSKα
• MAC: the message authentication code function: key = OVSKα

• Authenticator A registers OVPK and metadata (Rα, Mα) with Service α
• Rα : service α stores the random value and provides it to other authenticators
• Mα : other authenticators verify the received mac value is for Rα and service α
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[P3] Updating an OVK
OVPKn+1 inherits as much trustworthiness of OVPKn as possible
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[P3] Evaluating the Trustworthiness of        
an Updating Message

• The trustworthiness of all registered authenticators is equal.
• It is difficult for a service to determine whether an authenticator is stolen or not.

• It takes time for an attacker to gain control of a stolen authenticator
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Method

contains a candidate OVPK signed by the registered OVSK

• If the same updating message comes from more than half of authenticators
• the service trusts the message

• Otherwise, the service trusts 
• the updating message sent from the most authenticators
• the earliest received message if more than one the most trustworthiness messages



[Evaluation] Threat modeling

• We evaluated our proposal mechanism by using threat modeling

• We confirmed that our proposal achieves some security goals such as
• [SG-2] preventing correlation of accounts and 
• [SG-3] correctly binding public keys to accounts.

• We discussed how our proposal mitigates threats for which measures 
are not sufficient.
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[Evaluation] Threat Analysis Example

A malicious service
• pretends legitimate services and sends metadata stolen from the services. 
• prompts the user to register a new public key

The malicious service correlates OVPKs 
by whether the user requests a public key registration or not
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Conclusion
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• analyze the proposal mechanism with threat modeling

• evaluate what measures our proposal takes against found threats

• formal verification of cryptographic operations

• improvement of calculating trustworthiness of update messages.

Introduce a key pair called Ownership Verification Key (OVK)

The mechanism where users and services manage public keys based on 
the owner of authenticators storing the corresponding private keys.

• A user derives OVSK on her authenticators from the pre-shared seed

• A service binds OVPK and public keys signed by an OVSK to her account.

• They update OVK  in response to authenticators’ lifecycle
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