Key Management Based on

Ownersr

ip of Multiple Authenticators

N P

ublic Key Authentication

Kodai Hatakeyama, Daisuke Kotani and Yasuo Okabe

Kyoto University, Japan

[Background] Public Key Authentication (PKA)

* Is an alternative or complement way of password authentication

* Before authentication, a user has registered her account with a service
* The user manages a private key (also called secret key)
* The service manages the corresponding public key bounded to her account

1. Send a challenge Service
Device 2. Return a signature signed by
own O Bind
< I_n_l—@ the private key to the challenge — @:Eﬂ
sk (" pk
0 . y 3 Verify the signature with the bublic k
Ser Private key public key bounded to her Account uplickey

account

_

Fig: How to authenticate 2

[Background] Key Management in PKA
PETEETEETECEECEITLID Service
Y LT R I B O
wn | : : .
‘ attestation F@(+ attestation > Q pk
: key . : : .
User R Private key 1) Viaasecurechamnel '\ pccount Publickey

‘User manages private keys ‘

 On owned devices (called authenticators)
 Smartphone, laptop, ...
* Authenticators store private keys in secure storage where...
* private keys cannot be exported
* they require local authentication when using private keys
* Authenticators can send an attestation about public keys to be registered
e Attestations are signed by the attestation key embedded by its manufacturer

[Background] Key Management in PKA
[EYETITETe s RIS © R
40Ln attestation F@(+ attestation > Q_ pk
User key Private key | Viaasecure channel | pccoun Public key
‘ ‘ Service manages public key

* With binding each public key to legitimate account
e Services bind a public key
* When the user send it via trusted communication
* e.g.) communication during account registration
 When the attestation is successfully verified
* They verify that the corresponding private key is securely stored

[Problem] Multiple Authenticators

* User can only access services with the registered authenticator
* Because authenticators cannot export private keys to another authenticator

Cannot access service B AuthA |——/ Servicea ©="
with authenticator A(AuthA)! IF@ O kBind public key

Private key Q T @—_"Lﬂ

Have to register a new AuthC Account a

with each service Oo0o AuthB A
SN
OOO 9 =0 Service B
Revoke registered public keys of AuthB \ O
because of losing AuthB AuthC |~ Q‘ @Jﬂ
User | |.ocee. > Account B

[The Big burden of user]
To manage public keys of each authenticator according to its lifecycle .

Contribution

‘ Proposal ‘

The mechanism where users and services manage public keys based on
the owner of authenticators storing the corresponding private keys.

* Share a secret among owned authenticators only once in advance

* Avoid collation of accounts by collusion with multiple services

e Support for updating authenticators in response to their lifecycle

Evaluation

* analyze the proposal mechanism with threat modeling
* evaluate what measures our proposal takes against the found threats

[Related Work] Proxy registration of public keys

The registered authenticator generates and registers a public key
of another one on behalf of it.

1. When the user has three authenticators
‘ Problems‘

2. Support for updating authenticators in response to their lifecycle

Authenticator A I Registration O Service a

- Derive @ﬂ PKq on behalf of AuthB
Pk public keys pkg > @ C ok,

A

Accounta
Seed for generating public keys: S

Service
O B

User B
_IS Derive GF@ ska > @ G
sk Private keys skg Can access Pkp

thout licit] iterd Accountf
Seed for generating private keys without explicitly registering -

[Proposal] Overview(1/2)

* Introduce a cryptographic key pair called an Ownership Verification Key (OVK)
* The private key of the OVK (OVSK): shared among all authenticators owned by a user
* The public key of the OVK (OVPK): bounded to her account and managed by a service

* By using OVSK/OVPK
* a user can prove the ownership of authenticators

e a service can verify whether the public key to be registered is generated on her
authenticators

/
—| Authenticator A register OVPK during Account
> Public key

=O)private key account registration O . Bind ©="

L.T—(@ cee Bind ? eeee- @_r_'-q
R OVSK prove that skg is stored in Q b Ind oks

B her owned authenticator ‘ T Verify
Ln__l_@ skB‘ g @_ru-’

signature to pkg by OVSK OVPK g

Service

Share

User

[Proposal] Overview(2/2)

* Updates OVK when a user changes a set of her authenticators
* A user shares a new OVSK? among all owned authenticators including a new one

» Registered authenticators notify services of updating the OVPK?.
* the message contains the new OVPK? signed by the previous OVSK!.

* Services bind a new OVPK to her account based on the most trustworthy message

lost
gresee e, sighature to OVPK? by OVSK? |

A B . Service
IJF@ send by Authenticator B Account

O i ovskt [0 s 1O revol@ee @ﬂ

- AuthB notifies
\() OVPK? is the successor to OVPK! Q <+ Re- Bmd @___.—__.-,
SA Update | OVSK? T V‘“;”fy

¢ signature by OVSK? @:E] Update

OVPK? OVPK?

Registration after OVK renewal

|Proposal] Technical details

* How to derive the same OVK among authenticators for each service.
e [P1] Sharing a seed among authenticators
* [P2] Deriving the same OVSK among all authenticators from a pre-shared secret

* How to update a new OVK in authenticators and services
e [P1] Re-sharing a new seed among authenticators
* [P3] Updating an OVPK registered with services

Explain the proposals marked in red (P2 and P3)

10

[P2] Deriving an OVSK from a pre-shared secret

‘ Requirement ‘ Register different OVPKs with each service

‘ Reason ‘ To prevent services from correlating their accounts by using OVPKs

Authenticator Service a . :
Even if service a and B collude
A OVPK, O
> —
] @ OVPK,, They cannot reveal that
IQFZ) OVSK, _
Share register OVPK Account a é and é represent
OVSKg | ataccount registration

\ Service B
B O the same R
BT ovek E=
B :
OVPKq by using

and
Account 3 OVPK, OVPK;

11

[P2] Deriving an OVSK from a pre-shared secret

e Authenticators agree in advance on the following parameters

* seed: the secret shared among authenticators, svcid,
* KDF: the key derivation function: input =

* MAC: the message authentication code function: key = OVSK|

* Authenticator A registers OVPK and metadata (R,, M,) with Service a
* R, :service a stores the random value and provides it to other authenticators
. Ma: other authenticators verify the received mac value is for R, and service a

svcid,,

OVPK,
—> M,, R, : metadata

. identifier of Service a
(seed, R,) and output = OVSK,

User

B | F@OVSKa

Register a public key

> Service a
- OVSK At account registration O
Account
Share seed) R, \ Q T
—
1 —_— o a
—> verify M == M, metadata OVPK,

12

[P2] Unique OVKs per Service

Authenticator A | Service a
OVPK,, (Ry, M,)
Ry > O «— OVPK,
M, = MAC(OVSK,; R, + svcid,) register @ ------- (R, M)
R
seed B VL = MAC(OVSK. R q Service B
p = MAC(OVSKg; Rg + svcidg) OVPKg, (Rg, Mg) O OVPK
KDF > (OVSK,, OVPK,) g y
B B '
register @ """" (Rg, Mg)

» services cannot correlate their accounts
Re :I& Rg OVPKG:I& OVPKg by using registered OVPKs

13

[P3] Updating an OVK

Goal ‘ OVPK"*! inherits as much trustworthiness of OVPK" as possible

‘ Method ‘

Registered authenticators send the updating message containing
the legitimate OVPK"*! signed by the previous OVSK" .

‘ Problem ‘ Attackers try to update a malicious OVPK™?!_

. Service
;2\ B signature to OVPK? by OVSK!? Account
d by B
oVsK? | =0) sk, et - QO ~— @G rk
User e < Q — @:ﬂ pkeg

Steal| A S Attack! Which keys does the service trust?
A : >

Attacker E : signature by OVSK?
Q) sk ! send by A OVPK?

14

[P3] Evaluating the Trustworthiness of

an Updating Message
L contains a candidate OVPK signed by the registered OVSK

‘ Assumption ‘

* The trustworthiness of all registered authenticators is equal.
e |t is difficult for a service to determine whether an authenticator is stolen or not.

* It takes time for an attacker to gain control of a stolen authenticator

Method

* If the same updating message comes from more than half of authenticators
* the service trusts the message

* Otherwise, the service trusts
* the updating message sent from the most authenticators
* the earliest received message if more than one the most trustworthiness messages

15

[Evaluation] Threat modeling

* We evaluated our proposal mechanism by using threat modeling

* We confirmed that our proposal achieves some security goals such as
* [SG-2] preventing correlation of accounts and
* [SG-3] correctly binding public keys to accounts.

* We discussed how our proposal mitigates threats for which measures
are not sufficient.

16

[Evaluation] Threat Analysis Example

Threat | Homograph Mis-Registration

A malicious service

* pretends legitimate services and sends metadata stolen from the services.
Scenario * prompts the user to register a new public key

The malicious service correlates OVPKs
by whether the user requests a public key registration or not

Violation | SG-2: Services cannot correlate their accounts

Authenticators verify the MAC value of the received metadata
Address

including the identifier of the service that they communicate

17

Proposal

Evaluation

Future
Work

Conclusion

Introduce a key pair called Ownership Verification Key (OVK)

The mechanism where users and services manage public keys based on
the owner of authenticators storing the corresponding private keys.

* A user derives OVSK on her authenticators from the pre-shared seed
* A service binds OVPK and public keys signed by an OVSK to her account.
* They update OVK in response to authenticators’ lifecycle

* analyze the proposal mechanism with threat modeling
* evaluate what measures our proposal takes against found threats

e formal verification of cryptographic operations
* improvement of calculating trustworthiness of update messages.

18

