
Xilara: An XSS Filter
Based on HTML Template Restoration

Keitaro YAMAZAKI, Daisuke KOTANI and Yasuo OKABE

Kyoto University

Abstract. Cross Site Scripting (XSS) is one of the most fearful attacks
against web applications because of its potential damage to users, e.g.
sensitive data is stolen. XSS filter is one of existing mitigation technolo-
gies against XSS by monitoring communications between servers and
browsers to find attack codes in HTTP requests. However, some attacks
can bypass such XSS filters that checks the requests, for example, attacks
that uses complex attack codes like base64-encoded ones, and attacks
that may not include attack codes in the request, such as Stored XSS.
This paper proposes a new XSS filter: Xilara to detect XSS attacks by
monitoring HTTP responses instead of the requests. A key idea is that
normal responses have very similar HTML document structures because
they are usually generated by the same program (HTML template) and
some parameters (untrusted data), but once an XSS attack succeeds, the
structure of an HTML document changes because of the attack codes in
the untrusted data. As a preparation, Xilara collects normal HTTP re-
sponses, and restores HTML templates. To detect that the response is
contaminated by XSS attacks, Xilara checks whether an HTML docu-
ment in the response is an instance of the restored template or not, and
regards it being attacked if it fails. Our evaluation using XSS vulnerabil-
ities reported in the real world shows that Xilara can detect XSS attacks
whose attack codes are difficult to be detected by existing XSS filters, as
well as performance comparison between Xilara and existing XSS filters.

1 Introduction

Cross Site Scripting (XSS) is one of the most fearful attacks towards web applica-
tions [1]. Attackers abuse XSS for various purposes such as accessing to sensitive
user information, controlling the browser, or deceiving users by presenting fake
information. The sensitive user information includes session information which
is an identification of the user in the application. It is important to protect users
from XSS, but there are still many vulnerable applications because of bugs in
applications.

There have been several protections and mitigation techniques against XSS.
We focus on an XSS filter, which detects XSS by auditing the network communi-
cation between clients and servers, because it can be introduced to the systems
independently of the implementation of web applications. Some web browsers
have built-in XSS filters [2, 3], and some web application firewalls provide XSS

filter functions [4]. However, since existing XSS filters detect XSS by finding
attack codes in HTTP requests, attackers can sometimes bypass the detection
mechanisms by carefully crafting and sending attack codes.

A typical XSS vulnerability occurs when an application constructs an HTML
document with an HTML template (a structure of HTML documents) and data
including valid HTML fragments from untrusted sources. If we can separate
the HTML template and data accurately, we can detect XSS attacks through
comparison of the structure of many HTML documents in responses.

In this paper, we propose a new XSS filter, Xilara, based on the idea that
XSS attacks can be detected by checking the structures of the HTML documents
in responses. First, Xilara collects HTML documents in non-harmful HTTP re-
sponses and restores HTML templates with the collected documents and existing
methods for data extraction from multiple HTML documents. Then, to detect
XSS attacks, Xilara confirms whether the structure of an HTML document in an
HTTP response matches with the restored template, and regards the response
is harmful due to XSS attacks if the response does not match with the template.
Xilara can be applied not only to Reflected XSS but also to Stored XSS and can
be used independently of an application code.

We implemented Xilara and conducted experiments to evaluate the perfor-
mance of Xilara. We collected data of XSS attacks reported in the real world and
compared the XSS detection capability of Xilara with that of existing XSS filter.
The results show that, Xilara detected 94.5% of the XSS attacks but produced
false positive detections on 20.6% of the non-attacked HTTP responses. Also,
Xilara can detect all of the attacks which have base64-encoded attack codes
though an existing XSS filter cannot detect any of these attacks. In addition, we
show that Xilara can check whether the response is harmful or not with little
overhead in terms of the response time to users.

In the following of this paper, Section 2 describes our research background.
Section 3 introduces related works for XSS. Section 4 and 5 describes our pro-
posed method and its implementation. Section 6 describes an evaluation of Xilara
and its results. Section 7 shows a discussion, and Section 8 gives conclusion.

2 Background

2.1 XSS

XSS is an attack that injects a malicious script into a target web application.
When this attack is successfully executed, an attacker can send a malicious
JavaScript code to other clients accessing the target application and execute the
code on their web browsers. By using XSS, the attacker can temper the web
application’s content and grab access tokens owned by other users.

Many web applications accept data submitted from users, but in some cases,
data for attacks are submitted. We call these data submitted from users as
untrusted data. OWASP classifies XSS [5] by the place where untrusted data is
processed and whether untrusted data is permanently stored or not as shown in
Table 1.

Table 1: Class of XSS

Untrusted data is used at
Server Client

Data Persistence Stored Stored Server XSS Stored Client XSS
Reflected Reflected Server XSS Reflected Client XSS

The Server-side XSS occurs when a web application includes untrusted data
in an HTML document and sends it to the user. The web application should pro-
cess untrusted data as text or attribute values in the HTML document, but when
it simply concatenates the string representing HTML fragments and untrusted
data, XSS occurs. The Client-side XSS occurs when a JavaScript code provided
by the web application to web browser mishandles the untrusted data. In this
case, an attacker crafts untrusted data to create unintended HTML elements
through those APIs and adds HTML elements to execute malicious JavaScript.

Reflected XSS occurs when untrusted data in an HTTP request is not pro-
cessed correctly in the process of generating HTTP response or in the JavaScript
code in the web application. Stored XSS occurs when untrusted data sent from
the user is permanently stored in a database, log files in the web server, a
database in the web browser, etc. and when the web application does not prop-
erly handle these data.

In this research, we deal with Server-side XSS, and the XSS in the following
examples and subsequent sections represents Server-side XSS except explicitly
mentioned.

2.2 HTML Template

We will explain an HTML template, which is a concept used in this research.
Many web applications use HTML templates to create HTML. For example,
Ruby on Rails, which is a popular web application framework uses an HTML
template called ERB [6], and Flask uses an HTML template called Jinja [7].

In the same web page, data is encoded in the same way [8]. The representation
of HTML document generation method is called HTML template in this research.
Many web applications generate an HTML document by replacing the variables
in HTML templates with data.

There are algorithms such as RoadRunner [9], ExAlg [8] and DEPTA [10]
which restore HTML templates from the multiple outputs of web pages. Though
these algorithms are designed to extract data from web pages constructed from
databases, they generate HTML templates during the process.

RoadRunner receives multiple HTML documents generated from the same
HTML template and outputs a program called wrapper which extracts data
from an HTML document without any knowledge of the web page structure.
Since this program represents the encoding method of data in the web page, it
is an HTML template. RoadRunner defines the wrapper with prefix markup-

languages which abstract the structure that appears in general web pages, and
it is represented by the XML mainly consisting of the following elements.

<tag> HTML element. <p class="a"> will be represented as <tag element="p"
attrs="class:a">.

<and> [T1, ..., Tn]. A template which is a set of n templates (T1, ..., Tn).
<plus> [T1, ..., T1]. A template which is a set of consecutive templates T1.
<hook> (T1)?. A template which has optional template T1. T1 sometimes

appears in this template and sometimes doesn’t appear.
<variant> Template indicating that the content of its child element is variable.
<subtree> This template represents that it is impossible for RoadRunner to

generate the template at this node.

3 Related Works

There are roughly three types of countermeasures to prevent a Server-side XSS
attack. One is to install XSS filter between the web application server and client.
Second is to modify application code to detect XSS. The third is to modify the
web browser to detect XSS. We introduce these types of existing XSS counter-
measures while comparing with our research.

3.1 XSS Filter in Web Application Firewalls

Some web application firewalls (WAF) have XSS filters using regular expression
and blacklists for example in Javed and Schwenk [11]. People can relatively
easily install this XSS filter because it can be used independently from the web
application. In their study, they consider that the HTTP request is an attack
when it matches the following regular expression. OWASP ModSecurity Core
Rule Set1 is one of the well-known filters including such regular expression.

1 /(?:=|U\s*R\s*L\s*\()\s*[^ >]*\s*S\s*C\s*R\s*I\s*P\s*T\s*:/i

These mitigations are effective when they can detect the attack string in
HTTP requests. However, these are not effective when an attacker hides the
attack payloads in HTTP requests using a complicated converting process of the
application. For example, Kettle [12] reported that an attacker can bypass these
mitigation techniques when an application uses some WAF and a web browser
has built-in XSS filter. Another example can be found in an application which
converts untrusted data given from outside as hexadecimal numbers into a UTF8
encoded string and displays it2, and XSS filters introduced above cannot detect
1 https://modsecurity.org/crs/
2 It comes from a real application that has converted the external in-

put value by calling the function(utf8HexDecode) as the following URL.
https://sourceforge.net/p/subsonic/code/4715/tree/trunk/subsonic-ma
in/src/main/java/net/sourceforge/subsonic/util/StringUtil.java#l410

attacks against this web application. Our method checks an HTTP response so
that it can detect the attacks. Also, in the dataset used for the experiment of
our research, we found a case where an attacker encodes attack string in base64
format and a web application decodes3. In this case, attack payload4

j48c3ZnL29ubG9hZD1wcm9tcHQoL3hzc3Bvc2VkLyk

is included in the HTTP Request, so regular expression implemented in above
WAF cannot detect the attack.

3.2 XSS Protection Installed in an Application

Another method is to modify an application code and this method is relatively
hard to be introduced because it is necessary to update the application code
by hand or it is only applicable to applications developed in specific program-
ming languages. However, it is possible to detect and process the untrusted data
accurately because this method is implemented inside the application code.

A basic protection method of Server XSS is to escape HTML special char-
acters in untrusted data when these data are going to be combined with strings
representing HTML structure. For example, < in untrusted data should be con-
verted to < so that it is treated as a character in HTML documents. However,
there are still many vulnerable applications because sanitizing all untrusted data
comprehensively is difficult in some cases.

In addition, there are methods using a policy configured in application servers
to validate the HTTP response. The policy is used to prevent web browsers
from loading the code not intended by the administrator of the application.
Using Content Security Policy (CSP) [13], it is possible to specify the location
or hash value of valid JavaScript codes by creating a policy. Noncespaces [14]
and Document Structure Integrity [15] can detect attacks by assigning random
numbers to trusted HTML elements and its attribute names. xJS [16] isolates
legitimate client-side JavaScript code from the code comes from untrusted data.
However, since these methods require specific configuration for each application,
it is necessary to rewrite the code of the application in some cases, which is
a great burden to the server administrator. Therefore, they are not necessarily
said to be used widely and properly[17].

Since our method is an XSS filter-based defense mechanism, there is no re-
striction to the programming language of the web application and modification
to its source code to install the filter. Therefore, compared with these XSS pro-
tections, an operator of the web application who is not the developer of it can
install our XSS filter easily.

3.3 Web Browser built-in XSS filter

There are mitigation techniques implemented in web browsers. IE 8 using XSS
filter [2], and Google Chrome using XSS Auditor [3]. They detect the attack
3
https://www.openbugbounty.org/reports/113400/

4 This is base64 encoded attack string of "><svg/onload=prompt(/xssposed/)

string in the HTTP request and prevent the attack if the HTTP response also
includes a similar attack string.

These mitigation methods have the same issue with the XSS filter in WAF.
They cannot detect XSS attacks when the attack codes are not included in HTTP
request and when an attacker hides the attack payloads in HTTP requests using
a complicated converting process of the application. However, they can use the
same HTML parser installed in the web browser, and it improves the accuracy
of the detection.

4 Our approach

We focused on the following features that appear when a Server-side XSS attack
successes against a web application.

– Many web applications use HTML templates that describe how to encode
data in HTML when constructing HTML dynamically.

– To execute JavaScript code on the victim’s browser, attackers often inject
new HTML elements and HTML element attributes.

– After attacker injects a new HTML element or attribute, the structure of
HTML document becomes different from the structure of HTML document
encoded by HTML template with expected data.

In particular, we focused on the difference between the structure of HTML
document which the application usually generates with HTML template and that
of HTML which the application constructs after attacker conducts XSS attack.
For example, normal structure of HTML document generated by web application
shown in Figure 1 will be that of Figure 2. The application receives an ID from a
query parameter in the URI and has vulnerability against Reflected XSS. When
one of the user accesses to the attack URI (e.g. http://example.com/?id=<sc
ript>ATTACKSTRING</script>), the structure of the HTML document will be
that of Figure 3. In this research, our filter detects XSS depending on whether the
observed structure of HTML document can be output from an HTML template.

1 <html >

2 <h1 >Sample Vuln app </h1 >

3 <p>

4 Hello , <?php echo $_GET['id'] ?>

5 </p>

6 </html >

Fig. 1: Example source code written by PHP. It has vulnerabilities against Reflected
XSS and Stored XSS.

Sample Vuln app

<h1>

Hello: user

<p>

<html>

Fig. 2: HTML tree constructed
with ordinary HTTP request

Sample Vuln app

<h1>

Hello:

ATTACK STRING

<script>

<p>

<html>

Fig. 3: HTML tree constructed when XSS attack
is conducted

We propose a new XSS filter: Xilara (XSS filter based on HTML template
restoration) which restores the HTML template from the HTTP response and
detects the XSS. Figure 4 represents the overview of Xilara, and it consists of
three stages.

HTML Collection Stage Xilara collects HTTP responses from the web server
for some periods.

HTML Template Restoration Stage Xilara tries to restore the HTML tem-
plate used by the web application from the HTTP response.

XSS Detection Stage Xilara uses the restored HTML template to detect if
observed HTTP response is XSS attacked or not.

4.1 HTML Template

In this research, we define an HTML template as a tuple consisting of the fol-
lowing nodes.

Tag This node represents an HTML element that has a list of HTML ele-
ment names and pairs of attribute name and attribute value. There are
two types of attribute: variable and fixed. The Tag template t whose t.name
is p and t.attributes is [class="a"] (value is fixed) is encoded in HTML <p
class="a">. Furthermore, the Tag node has an HTML template as a child
element, and the parent-child relationship between the Tag nodes represents
the parent-child relationship in the HTML element in the HTML document.

Loop This node represents that at least one HTML template (T1) appears
consecutively. HTML template T1 is a child element of the Loop node.

Optional This node represents that one template (T1) sometimes appears and
sometimes does not appear. HTML template T1 is a child element of the
Optional node.

Ignore This node represents an element that could not restore an HTML tem-
plate. This node has no child elements.

Fig. 4: Approach overview of Xilara

Null This node represents an empty node. This node has no child elements.

This definition is similar to RoadRunner’s HTML template as described
in Section 2.2, but we add the type of attribute value to Tag node to find
whether the attribute value is variable or not for each Tag element. Also, to
deal with XSS using attribute values of HTML element, a specific attribute
of the Tag node of the HTML template is classified by attribute value. If an
attacker can set an arbitrary value of onerror, onload attribute, href attribute
of A HTML element, and so on, the attacker can conduct XSS attack. For
example, attacker establishes the attack by setting attribute values like on-
error="ATTACK STRING" or href="javascript:ATTACK STRING". It is dif-
ficult to detect whether the value of onerror, onload attribute is malicious code
or not because there is no clue for detection. We focus on two patterns of href
attribute of the A HTML element. One is to use as a link to another web page
using the HTTP protocol like . Another is to
execute JavaScript code when the user clicks the HTML element. For example,

 represents an HTML element that web
browser backs to the previous page after the user clicks the element. Even if the
developer of the Web application uses this href attribute for a link to another
web page, if an attacker can set the attribute value from the outside, the attacker
can embed the JavaScript code like the latter to execute attack strings written
by JavaScript. Therefore, if there is no sample that the value of this attribute
starts with javascript: and is always used for the former, we judge that the at-
tribute is used as a link to another web page and guarantee not to be used in the
latter. In addition to the href attribute of the A element, we treat src attribute
of the iframe element, and so on, in the same way. 5.

4.2 HTML Document Collection Stage

In the first stage, Xilara behaves as an HTTP proxy and collects HTML docu-
ments in HTTP responses by monitoring communication between users and web
applications. To ensure that the collected HTML document is a model of an
HTML document without any XSS attack, it is desirable that the application
works in an environment without an attacker at this stage. We think this con-
straint is not problematic because this constraint is easily fulfilled, for example
if an administrator runs the web application on test environment which is com-
monly used to check the application’s behavior in local or on the environment
which is accessible only to the invited user.

4.3 HTML Template Restoration Stage

At this stage, Xilara restores the HTML template from the HTML documents
collected at the previous stage. To restore HTML templates, Xilara applies ex-
isting algorithms such as ExAlg and RoadRunner. Template nodes in the HTML
template outputted by these algorithms are corresponding to Tag node, Loop
node, Optional node, and so on. Therefore, we can convert from the HTML
template outputted by these algorithms into the HTML template handled in
our research. In our research, the HTML template considers whether each value
of some attributes starts with javascript: as described in Section 4.1. We describe
detailed implementation of the conversion in 5.

4.4 XSS Detection Stage

In this stage, the application works in the real environment, and an external
attacker may access it. At this stage, Xilara behaves as a reverse HTTP proxy
5 We found these attributes in https://html5sec.org/ have the same characteristics.

formaction attribute in button element / poster attribute in video element / href
attribute in math, a, base, go, line element / xlink:href attribute in any element
/ background attribute in table element / value attribute in param element / src
attribute in embed, img, image, script element / action attribute in form element /
to, from attribute in set, animate element / folder attribute in a element

and audits communication between clients and servers. It detects the XSS by
checking whether the HTML document that the application server sends to the
user is an instance of the HTML template generated at the previous stage.
Algorithm 1 shows how to judge whether or not the observed HTML document
is an instance of the HTML template.

Algorithm 1 Check if an HTML document is an instance of HTML template
Require: HTMLRoot: HTML Tree, TemplateRoot: HTML Template
1: nodePairQueue := [[HTMLRoot, TemplateRoot]]
2: while nodePairQueue has element do
3: nodePair := first element of nodePairQueue
4: html := nodePair[0]
5: template := nodePair[1]
6: if !checkNode(html, template) then
7: continue
8: end if
9: if The children of html and that of template should be checked then

10: Append node pairs which should be checked into nodePairQueue.
11: continue
12: end if
13: if The next siblings of html and that of template should be checked then
14: Append node pairs which should be checked into nodePairQueue.
15: continue
16: end if
17: if The next node of html and that of template should be checked then
18: Append node pairs which should be checked into nodePairQueue.
19: continue
20: end if
21: return True
22: end while
23: return False

Algorithm 1 receives HTML document and HTML template and judges if
the root node of HTML document can be an instance of the root node of HTML
template by using a deep-first search. First, this algorithm checks the attribute
and name of HTML document node and HTML template node with function
checkNode described in Algorithm 2. Next, it checks the children of HTML
document node and HTML template node. Similarly, it checks the next sibling
nodes of HTML document node and HTML template node and next sibling
nodes of parent nodes of them. Finally, if the HTML document node can be an
instance, the algorithm returns True.

If the HTML document is an instance of the HTML template, Xilara sends
the HTTP response to the user. If it is not an instance, Xilara reports to the
administrator that an XSS attack is detected and sends an error message to the
user. The administrator can configure the process executed after Xilara detects

Algorithm 2 Check if properties of html are same with that of template

1: procedure checkNode(html, template)
2: if name of HTMLNode ̸= name of TemplateNode or HTMLNode has at-

tributes not included in TemplateNode then
3: return False
4: end if
5: while not an end of attributes of TemplateNode do
6: tAttr := next attribute of TemplateNode
7: hAttr := attribute of HTMLNode which has same name of tAttr
8: if name of tAttr = id or class then
9: if tAttr has fixed value and value of hAttr ̸= value of tAttr then

10: return False
11: end if
12: else if tAttr receives both an URI and a JavaScript code then
13: if the values of tAttr do not start with javascript: and value of hAttr

start with javascript: then
14: return False
15: end if
16: end if
17: end while
18: return True
19: end procedure

XSS, for example, he or she may send an HTTP response to the user even if
Xilara detects XSS to keep the application highly available.

5 Implementation

In this chapter, we describe the detail of Xilara’s design for each stage.

5.1 HTML Collection Stage

In the HTML Collection Stage, Xilara acts as an HTTP reverse proxy. As the
input, Xilara receives the hostname and port number of the destination web
application and port number of the reverse proxy. After startup, Xilara observes
an HTTP request and an HTTP response between client and web application
and saves the pair of an HTTP request path and HTTP response contents. Also,
to prevent the saving of non-HTML content such as images, Xilara confirms
Content-Type in an HTTP response header is text/html and stores only HTML
documents. To collect the HTTP responses, the administrator can introduce
some existing automatic web crawling techniques. For example, Heydon and
Najork proposed a scalable web crawler [18] and Galan et al. [19] proposed a
multi-agent XSS scanner which discovers the input locations and sends HTTP
request6. Administrators can also manually generate an HTTP request by using
the web application as its user.
6 In this case, injected data should not be malicious attack code

5.2 HTML Template Restoration Stage

If the web application uses multiple HTML templates, Xilara should classify
each collected HTML documents by its source HTML template. Usually, web
applications use a different HTML template if a requested URI is different.
Some web applications use URI routing patterns which indicate that all URIs
which match the same pattern are related to the same HTML template. Xilara
receives the collection of regular expressions as URL routing patterns from the
owner of the web application. If Xilara receives no URI routing patterns, Xilara
considers that URIs that has the same pathname are related to the same HTML
template. Then, Xilara groups HTML documents constructed from the same
HTML template.

When RoadRunner restores the HTML template, RoadRunner may parse the
HTML document in a different way that real web browser does. These differences
occur when the HTML structure of the document is not valid (e.g., closing HTML
element without corresponding open HTML element). If Xilara uses a different
parse result than that of the web browser, the attacker can exploit the difference
and can successfully add attributes of HTML elements and HTML elements
only recognized by the web browser. So, at this stage, Xilara parse the HTML
document using DOMParserAPI on Google Chrome and encode it to a string
representing an HTML document. Strictly speaking, since different web browsers
parse an HTML document differently, Xilara should conduct this process for all
web browsers, but in our first implementation, Xilara only considers about Google
Chrome.

Then, Xilara uses RoadRunner to restore HTML template from HTML doc-
uments in the same group. RoadRunner receives HTML documents and pref-
erences file. In the initial preferences of RoadRunner, it is required to match
the HTML elements whose attribute values of id and class are same, and it
is defined in the attributeValues setting. However, this setting prevents HTML
template from being restored because some web applications set these attribute
values dynamically. Therefore, in this research, we clear this setting. Instead,
after restoring the HTML template, Xilara investigates the values of id, class
attributes of each Tag node of the HTML template and if the attribute value
is always same, Xilara considers the attribute value as constant. Xilara inves-
tigates the possible values of these attributes by collecting the attribute values
for each Tag node through checking the correspondence between Tag nodes in
the HTML template and HTML elements in the input HTML documents. Xilara
uses nodePair matched finally in Algorithm 1 and to collect the correspondence.

Since the output of RoadRunner is an XML document composed of the el-
ements described in Section 2.2, Xilara converts the output of RoadRunner to
the HTML template used by Xilara with the following rule.

< tag >→ Tag A <tag> node is converted to a Tag node having the same
element name, attributes and child elements.

< and >→ Tuple An <and> node which is a set of HTML templates is con-
verted into a tuple containing its child elements.

< plus >→ Loop A <plus> node is converted to a Loop node having the same
child elements.

< hook >→ Optional A <hook> node is converted to an Optional node having
the same child elements.

< subtree >→ Ignore A <subtree> node is converted to an Ignore node having
the same child elements.

5.3 XSS Detection Stage

At this stage, Xilara behaves as an HTTP proxy like the HTML collection stage
and does not detect XSS if the Content-Type header in HTTP response is not
text/html. Xilara parses each HTML document through Google Chrome as in the
HTML template restoration stage. After that, Xilara searches the corresponding
HTML template from the URI in the HTTP request and checks whether the
HTML document is an instance of the HTML template or not.

6 Evaluation

6.1 Depth Evaluation with Specific Vulnerabilities

To evaluate the process speed and XSS detection capability of Xilara, we con-
ducted manual evaluation experiments with one web applications and two Word-
Press plugins. The targeted applications are shown in Table 2. For experiments,
we used MacBook Pro 2016 with 2.9 GHz Intel Core i5 CPU and 8GB memory.

Table 2: Applications used for experiments

Application Version CVE or vuln info
Webmin 1.678 CVE-2014-0339

Count Per Day 3.5.4 https://wpvulndb.com/vulnerabilities/8587
AffiliateWP 2.0.9 https://wpvulndb.com/vulnerabilities/8835

We obtained 4 to 6 HTTP responses of the page where the XSS vulnerability
exists through simulation of the typical use for each application, which causes a
change of URI parameters and data in databases. We then restored the HTML
template and tested whether Xilara can detect the XSS with the HTTP response
created by the proof of concept (PoC) of the vulnerability. In addition, we tested
whether Xilara detected XSS in normal HTTP responses by mistakes.

As a result of the experiment, we were able to detect attacks on Webmin and
Count Per Day. However, Xilara could not detect the attack on AffiliateWP.
This is because RoadRunner fails to restore an HTML template of AffiliateWP
and the subtree appears in the template where the attack string is inserted. Also,

normal responses were not detected as XSS in all applications. We confirmed that
RoadRunner had some problems with restoring Optional HTML templates.

Table 3 shows the average times of vulnerable pages (calculated ten times)
and the average times which Xilara takes to parse HTML and judge XSS attacks.
The result shows that the processing time of Xilara is moderate or low.

Table 3: Xilara performance result

Application Response time Xilara overhead
Webmin 423.46ms 14.16ms

Count Per Day 109.72ms 27.5ms
AffiliateWP 186.84ms 21.4ms

6.2 Large-Scale Evaluation with Vulnerable Website Dataset

Next, we conducted experiments using more web applications to investigate the
differences of the behavior between Xilara and another XSS filter. We used the
OpenBugBounty7 as a dataset. OpenBugBounty lists the web pages containing
the XSS vulnerability and the attack URI including attack strings against the
page as a part of responsible disclosure. Experiments were carried out by the
following procedure.

1. Collect reports that are still valid from OpenBugBounty.
2. Create normal requests and collect HTTP responses.
3. Investigate whether Xilara can detect XSS attacks.
4. Investigate whether another XSS filter can detect attacks for each report.

We will describe the detail of each step and results in the following sections.

Data Collection from OpenBugBounty First, we collected XSS datasets
registered in OpenBugBounty. On November 26, 2017, the number of reports
was 179702, and the number of published XSS reports was 74888. Since it takes
time to investigate all the reports in this experiment, we only handle reports
whose ID ends with 0.

Furthermore, we investigated whether each vulnerability exists even now.
We collected HTTP responses outputted after we accessed the attack URI and
confirmed the vulnerability by monitoring the execution of JavaScript functions
such as alert, prompt, confirm after rendering the HTTP responses on Google
Chrome. As a result, 4601 reports have vulnerabilities not fixed up to now. We
proceeded the experiment using these 4601 reports.
7
https://www.openbugbounty.org/

HTML Collection Stage Next, to create an HTML template and to verify
XSS filters do not erroneously detect the XSS from a normal HTTP response,
we created normal HTTP requests by removing the malicious code from the
attack URI of each report. In most cases, if a web application has XSS vul-
nerability and XSS attack string is included in the query parameter, the web
application considers the value of the query parameter is variable and applies
to the HTML template. Therefore, if the value of query parameter in the URI
matches one of the two regular expressions in Figure 5, we consider that the
query parameter is used for the attack and replace the value of the query pa-
rameter with numerals so that we can fetch an HTML document constructed
without attack strings. The first regular expression in Figure 5 matches with the
HTML element such as "><script>alert(1)</script> whose text includes at-
tack JavaScript code. The second regular expression matches with the HTML
element such as "> whose attribute value in-
cludes attack JavaScript code. After we discovered the attack strings in URIs, we
change the value of the parameter to five numbers from 1 to 5. We sent HTTP
requests with replaced URIs and obtained the corresponding HTTP responses.
As a result, we could collect all HTTP responses for 3408 reports.

1 /(['"]?[^ >]* >) *<[^>]+>[^<]*(alert|confirm|prompt)

[^ <]*(<\/[^ >]+ >)?/ig

2 /(['"]?[^ >]* >) *<[^>]+(alert|confirm|prompt)([^>]+>)?/ig

Fig. 5: Attack patterns we consider

Furthermore, we confirmed that some attack strings are encoded in special
formats. For example, in eight reports, attack strings are encoded with base64.
In one report, attack strings are displayed with hexadecimal digits. We also
changed the value of the parameter used for each of these attacks and collected
HTTP responses.

We continued our experiments using these 3417 reports.

XSS Detection with Xilara We restored the HTML template from four
HTML documents with parameters 1 to 4 collected in the HTML collection
stage. We succeeded to restore the HTML template in 3295 reports.

Then, we investigated whether Xilara can detect XSS in HTTP response
generated from attack URI and whether Xilara detects no XSS in HTTP response
collected in the previous stage.

XSS Detection with other XSS filters To compare Xilara with existing
XSS filters, we investigated whether ModSecurity [4] and OWASP ModSecurity
CRS can detect reported attacks. We use libapache2-modsecurity (version 2.7.7)

as a ModSecurity implementation with Apache (version 2.4.18-2ubuntu 3.5).
We enabled SecRuleEngine option for ModSecurity and used default settings for
other options. Also, we use OWASP ModSecurity CRS version 3 and enable the
rules8 to block the HTTP request when ModSecurity detects XSS.

We replaced the hostname and port number in the attack URI to those of the
Apache server and investigated whether ModSecurity blocks the HTTP request
or not after we send HTTP request of the attack URI.

Evaluation Result We compared the XSS detection rates and XSS misdetec-
tion rates among Xilara and ModSecurity with OWASP ModSecurity CRS.

Row 1 and 2 in Table 4 shows XSS detection rates against 3417 attack URIs.
In total, Xilara detected XSS in 3230 attack URIs. Xilara could not detect XSS
in 121 HTML documents because it could not restore the HTML template, and
Xilara could not detect XSS in 66 HTML documents thought it could restore the
HTML template. ModSecurity could detect 99.6% of the attacks in attack URIs
because we used the attack URIs which match the patterns in Figure 5. However,
ModSecurity could not detect all of the nine attacks in which attack string is
encoded with base64 or hexadecimal. Xilara can detect eight of these attacks
and it fails to restore the HTML template correctly in one of these attacks.

Row 3 and 4 in Table 4 shows the rates of XSS detection against 3417 ∗
4 = 13668 normal HTTP responses (and HTTP requests) which were used to
create HTML template and 3417 normal HTTP responses (and HTTP requests)
which were used for verification. Xilara detected XSS by mistakes in 1640 HTML
documents though they are used to construct HTML templates. Xilara detected
XSS by mistakes in 703 HTML documents which were used for verification.

Table 4: XSS detection rates against attack URIs and normal HTTP responses

Xilara ModSecurity with CRS
All attacks 94.5% 99.6%

Attacks using some encodings 88.9% 0%
Template source responses 12.0% 0.18%

Verification responses 20.6% 0.18%

7 Discussion

7.1 Adaptive Attacker against Xilara

We discuss adaptive attacker against Xilara and attacks that cannot be detected
by Xilara. Xilara detects XSS attacks using the result of matching of restored
8 REQUEST-941-APPLICATION-ATTACK-XSS.conf and REQUEST-949-

BLOCKING-EVALUATION.conf

templates and the HTML documents. It means if an attacker can craft HTML
documents for XSS attack that matches the template, the attacker can bypass
Xilara.

In the above example, an attacker can increase the number of li elements.
However, an attacker cannot execute arbitrary scripts to steal user’s data. For
an attacker to avoid Xilara and run scripts, an HTML element or attribute
that can include a context for executing JavaScript (in this paper, we call a
JavaScript execution context) should appear in the template. In addition, this
context should not be a fixed value and should exist after the part that the
attacker can control in the document. As a result, there are following patterns
of HTML document structures that an attacker can avoid detection.

JavaScript execution context in Loop If Loop node includes a JavaScript
execution context that is not a fixed value as shown in Figure 6 and if
the attacker can inject HTML element, the attacker can avoid the filter by
sending text1<script>attack string</script>.

JavaScript execution context in Optional If Optional node includes a
JavaScript execution context that is not a fixed value as shown in Figure 7
and if the attacker can inject HTML element, the attacker can avoid the fil-
ter by sending text1<script>attack string</script>. This attack is available
only if <script> HTML element in Optional node does not appear.

Attacker controlled JavaScript execution context If the attacker can di-
rectly control the text in the <script> element or attribute values which are
JavaScript execution context, the attacker can insert attack strings without
changing the HTML document structure. In some cases, the attacker can
also bypass general protection methods that use HTML escaping.

The area
editable by
the attacker

<Tag name="script">

<Tag name="li">

<Loop>

Fig. 6: Template which contains dynamic
JavaScript code in Loop

The area
editable by
the attacker

<Tag name="script">

<Optional>

<Tag name="div">

Fig. 7: Template which contains dynamic
JavaScript code in Optional

7.2 Constraint of Xilara and Its Use Case

There are some constraints to use Xilara. One of the constraints is that Xilara
should works in an environment without an attacker at HTML document collec-
tion stage. Another is that the user of Xilara should prepare the URL routing
patterns if the web application uses multiple HTML templates. However, if the
URIs of the application that has the same pathname are always related to the
same HTML template, the user does not need to prepare. The third is that the
user of Xilara should run Xilara as an HTTP reverse proxy.

We suppose that the administrator of the web application can use Xilara
because he or she can prepare the environment without an attacker. Since Xilara
does not require the source code of the application, the user of Xilara should not
always be a developer of the application, and Xilara runs independently of the
programming language of the application.

8 Conclusion

In this paper, we propose a new XSS filter, Xilara, to address the issue that
attackers can sometimes bypass existing XSS filters that checks attack codes in
requests by carefully crafting and sending the attack codes. Our key idea is that
the harmful HTML documents in responses have different structures of the doc-
ument, and it can be detected because many web applications generates HTML
documents with very similar structures in responses from the same programs.
Xilara uses an HTML template, and we define our HTML template model. In
our HTML template model, we distinguish some HTML attributes with its value
to detect XSS attacks which exploit those attribute values. Xilara observes an
HTML structure in ordinary HTTP responses and restores HTML templates to
detect XSS. To restore the HTML templates, we apply RoadRunner which has
been developed for data extraction from multiple HTML documents. We imple-
ment Xilara as a proxy between clients and servers, and Xilara can coexist with
the existing XSS filters.

We also conducted experiments to evaluate the performance of Xilara. We
collected the XSS attack dataset from OpenBugBounty and evaluated Xilara
and confirmed that Xilara detected 94.5% of the XSS attacks but judged XSS
attacks mistakenly on 20.6% of the non-attacked HTTP responses. Xilara can
also identify the attacks which use some encodings though an existing XSS filter
cannot detect any of these attacks. In addition, our manual experiment shows
that overhead of Xilara in each request is moderate or low.

Future works include more extensive evaluation of Xilara using various kinds
of XSS vulnerabilities that current XSS filters are hard to detect, and improve-
ment of accuracy of HTML template restoration to decrease the false positive
rate.

References

1. Wichers, D.: Owasp top-10 2013. OWASP Foundation, February (2013)

2. Ross, D.: Ie 8 xss filter architecture / implementation. https:

//blogs.technet.microsoft.com/srd/2008/08/19/ie-8-xss-filter-archi
tecture-implementation/ (2008)

3. Bates, D., Barth, A., Jackson, C.: Regular expressions considered harmful in client-
side xss filters. In: Proceedings of the 19th international conference on World wide
web, ACM (2010) 91–100

4. Trustwave: Modsecurity: Open source web application firewall. https://www.mod
security.org/ (2004)

5. Wichers, D.: Types of cross-site scripting. https://www.owasp.org/index.php/Typ
es_of_Cross-Site_Scripting

6. Dave, T., David Heinemeier, H.: Agile web development with rails. Citeseer (2005)
7. Lokhande, P., Aslam, F., Hawa, N., Munir, J., Gulamgaus, M.: Efficient way of

web development using python and flask. (2015)
8. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In:

Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, ACM (2003) 337–348

9. Crescenzi, V., Mecca, G., Merialdo, P., et al.: Roadrunner: Towards automatic
data extraction from large web sites. In: VLDB. Volume 1. (2001) 109–118

10. Zhai, Y., Liu, B.: Structured data extraction from the web based on partial tree
alignment. IEEE Transactions on Knowledge and Data Engineering 18(12) (2006)
1614–1628

11. Javed, A., Schwenk, J.: Towards elimination of cross-site scripting on mobile ver-
sions of web applications. In: International Workshop on Information Security
Applications, Springer (2013) 103–123

12. Kettle, J.: When security features collide. http://blog.portswigger.net/2017/
10/when-security-features-collide.html (2017)

13. Stamm, S., Sterne, B., Markham, G.: Reining in the web with content security
policy. In: Proceedings of the 19th international conference on World wide web,
ACM (2010) 921–930

14. Van Gundy, M., Chen, H.: Noncespaces: Using randomization to enforce informa-
tion flow tracking and thwart cross-site scripting attacks. In: NDSS. (2009)

15. Nadji, Y., Saxena, P., Song, D.: Document structure integrity: A robust basis for
cross-site scripting defense. In: NDSS. Volume 2009. (2009) 20

16. Athanasopoulos, E., Pappas, V., Krithinakis, A., Ligouras, S., Markatos, E.P.,
Karagiannis, T.: xjs: practical xss prevention for web application development.
In: Proceedings of the 2010 USENIX conference on Web application development,
USENIX Association (2010) 13–13

17. Weichselbaum, L., Spagnuolo, M., Lekies, S., Janc, A.: Csp is dead, long live csp! on
the insecurity of whitelists and the future of content security policy. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
ACM (2016) 1376–1387

18. Heydon, A., Najork, M.: Mercator: A scalable, extensible web crawler. World Wide
Web 2(4) (1999) 219–229

19. Galán, E., Alcaide, A., Orfila, A., Blasco, J.: A multi-agent scanner to detect
stored-xss vulnerabilities. In: Internet Technology and Secured Transactions (IC-
ITST), 2010 International Conference for, IEEE (2010) 1–6

